Non-invasive cell tracking of SPIO labeled cells in an intrinsic regenerative environment: The axolotl limb
نویسندگان
چکیده
Non-invasive methods to track the progress of stem cell therapies are important in the development of future regenerative therapies. Super-paramagnetic iron oxide particles (SPIOs) have previously been applied to track cells using magnetic resonance imaging (MRI) in vivo in non-regenerative animal models. To the best of the author's knowledge, the present study investigated for the first time, the feasibility of tracking SPIO labeled cells in an intrinsic regenerative environment, the regenerating limb of the axolotl, and investigated the homing of stem cell-like blastema cells to the regenerative zone. Viability and labeling success of labeled axolotl blastema cells was tested in vitro using cell culture and histology. SPIO labeling was performed in situ by intramuscular injections and mapped using MRI. Enhanced permeability and retention (EPR) effects were evaluated in the blastema, liver, heart, kidney and a back muscle. Finally, SPIO/Fluorophore-labeled blastema cells were injected intravascularly and tracked using MRI and fluorescence imaging. It was demonstrated that SPIO labeling had no effect on axolotl cell viability in vitro. In situ labeling resulted in an MRI signal alteration during 48 days of regeneration. EPR effect of unbound SPIO was observed only in the liver. MRI tracking revealed increased concentrations of SPIO labeled blastema cells in the liver, kidney and heart, however not the blastema of intravascularly injected axolotls. In conclusion, the results demonstrated that SPIO labeling facilitated non-invasive tracking of injected cells in the regenerating axolotl limb. An early homing mechanism of injected blastema cells to an injury site was not observed.
منابع مشابه
Clinically Translatable Cell Tracking and Quantification by MRI in Cartilage Repair Using Superparamagnetic Iron Oxides
BACKGROUND Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal stem cells (hBMSCs) regarding effectivity, ...
متن کاملFunctional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles.
Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capac...
متن کاملTracking cells implanted into cynomolgus monkeys (Macaca fascicularis) using MRI
Regenerative therapy with stem cell transplantation is used to treat various diseases such as coronary syndrome and Buerger's disease. For instance, stem-cell transplantation into the infarcted myocardium is an innovative and promising strategy for treating heart failure due to ischemic heart disease. Basic studies using small animals have shown that transplanted cells improve blood flow in the...
متن کاملA New Method for Preparing Mesenchymal Stem Cells and Labeling with Ferumoxytol for Cell Tracking by MRI
Mesenchymal stem cells (MSCs) are among the major stem cells used for cell therapy and regenerative medicine. In-vivo cell-tracking by magnetic resonance imaging (MRI) is crucial for regenerative medicine, allowing verification that the transplanted cells reach the targeted sites. Cellular MRI combined with superparamagnetic iron-oxide (SPIO) contrast agents is an effective cell-tracking method...
متن کاملSuperparamagnetic Iron Oxide Nanoparticles Function as a Long-Term, Multi-Modal Imaging Label for Non-Invasive Tracking of Implanted Progenitor Cells
The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO) nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI) and X-ray micro-computed tomography (μCT). SPIO-labeled primary myoblasts were embedded in fibrin sealant and...
متن کامل